If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=x^2+40x+200
We move all terms to the left:
0-(x^2+40x+200)=0
We add all the numbers together, and all the variables
-(x^2+40x+200)=0
We get rid of parentheses
-x^2-40x-200=0
We add all the numbers together, and all the variables
-1x^2-40x-200=0
a = -1; b = -40; c = -200;
Δ = b2-4ac
Δ = -402-4·(-1)·(-200)
Δ = 800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{800}=\sqrt{400*2}=\sqrt{400}*\sqrt{2}=20\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-20\sqrt{2}}{2*-1}=\frac{40-20\sqrt{2}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+20\sqrt{2}}{2*-1}=\frac{40+20\sqrt{2}}{-2} $
| q·0.7=5.6 | | n2+8=80 | | 800x=-x^2 | | (x+7)(x+7)=252 | | m2+6=41 | | 29.90=1.15r | | 180=0.26x+x | | 3×+10+x=2×-5 | | 12–8y=5y–14 | | |2x−3|=2 | | -5(3x-29)=2(x-1)-57 | | 51-3+5k=55+3 | | 3x2+3x-4=0 | | 9=d9 | | 6y=24+12 | | 11n=45 | | x+2=53x+6=15 | | 15(15)=x(x+16) | | (7y+2)(6y+7)=0 | | 2.80n=42 | | (3x)x=40 | | 2.80n=30 | | (x-43)+(2x-18)+(x-39)=180 | | 1/6x=17 | | 2b^2-13b+20=0 | | 9(x+5)=3(x-23) | | 7+3x-2=4x | | 5x+3(x÷4)=28 | | 90=3x(5)/(3)-6 | | (x-4)/(x+4)=2/9 | | 0.4(b)=12 | | 3p-6=5p |